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GRAPH EMBEDDINGS AND LAPLACIAN EIGENVALUES 

STEPHEN GUATTERY* AND GARY L. MILLERt 

Abstract. Graph embeddings are useful in bounding the smallest nontrivial eigenvalues of Laplacian 

matrices from below. For an n x n Laplacian, these embedding methods can be characterized as follows: The 

lower bound is based on a clique embedding into the underlying graph of the Laplacian. An embedding can 

be represented by a matrix T; the best possible bound based on this embedding is n/Amax(rTr). However, 

the best bounds produced by embedding techniques are not tight; they can be off by a factor proportional 

to log2 n for some Laplacians. 

We show that this gap is a result of the representation of the embedding: by including edge directions in 

the embedding matrix representation T, it is possible to find an embedding such that TTr has eigenvalues 

that can be put into a one-to-one correspondence with the eigenvalues of the Laplacian. Specifically, if A is 

a nonzero eigenvalue of either matrix, then n/X is an eigenvalue of the other. Simple transformations map 

the corresponding eigenvectors to each other. The embedding that produces these correspondences has a 

simple description in electrical terms if the underlying graph of the Laplaciain is viewed as a resistive circuit. 

We also show that a similar technique works for star embeddings when the Laplacian has a zero Dirichlet 

boundary condition, though the related eigenvalues in this case are reciprocals of each other. In the Dirichlet 

boundary case, the embedding matrix T can be used to construct the inverse of the Laplacian. Finally, we 

connect our results with previous techniques for producing bounds, and provide an illustrative example. 

Key words. Laplacian matrices, graph eigenvalues and eigenvectors, graph embeddings 

Subject classification. Computer Science 

1. Introduction. In this paper we present an exact relationship between graph embeddings and the 

eigenvalues and eigenvectors of Laplacian matrices. The study of the connection between Laplacian spectra 

(particularly with respect to A2) and properties of the associated graphs dates back to Fiedler's work in the 

1970's (see, e.g., [10] and [11]). The Laplacian also has an important role in representing physical problems. 

It occurs in finite difference, finite element, and control volume representations of problem involving elliptic 

partial differential equations. These problems often include a Dirichlet boundary condition that specifies that 

the values at a set of vertices are zero. To represent this condition in the Laplacian, the rows and columns 

corresponding to the boundary vertices are deleted from the matrix. The resulting matrix is positive definite, 

and it is the smallest eigenvalue of the matrix that is of interest. 

Bounds on the smallest nonzero eigenvalues of both forms of the Laplacian have other important applica- 

tions. Since the matrices are symmetric, their extreme eigenvalues can be used in computing their condition 

numbers, which are used in the study of iterative linear system solvers to estimate rates of convergence [18], 

and to analyze the quality of preconditioners [4, 13]. Bounds on A2 are useful in the analysis of spectral 

partitioning, both because A2 occurs in bounds on cut quality [24], and because they can be used in isolating 
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structural properties of the eigenvectors used in making the cuts [16, 28]. The eigenvalue A2 has been related 

to expansion properties of graphs, and can be used in determining if a graph is an expander [1, 2]. 

One common class of techniques for computing such lower bounds uses properties of graph embeddings 

[9, 15, 20, 22, 26, 27]. In such methods, a graph H is embedded into the graph G under study; that is, 

vertices of H are identified with vertices of G, and paths in G are specified to correspond to edges in H. 

Specific metrics on the embedding such as congestion and dilation are then computed; they are then used 

to calculate lower bounds. H is usually chosen to have some specific structure; most often it is a clique or a 

star. The bounds produced in general are not tight, however. Kahale [22] has shown that for some graphs, 

the gap can be a factor of log2 n, where n = |V(G?)|. 

In this paper, we prove an exact relationship between graph embeddings and Laplacian eigenvalues. In 

particular, we present a matrix representation of embeddings that differs from the representation used in the 

methods mentioned above. This representation allows any embedding into G to be expressed as a matrix 

T. We also introduce the current flow embedding, which is based on routing unit currents between pairs of 

vertices when edge weights are viewed as conductances. We denote the embedding matrix for the current 

flow matrix as Tcf- We show that, for a clique embedding based on routing a unit current between each pair 

of vertices, if the Laplacian L{G) has an eigenvalue A with eigenvector u, then T^rc/ has eigenvalue n/A; 

the corresponding eigenvector is JBU, where B is the edge-vertex incidence matrix of the Laplacian. 

In the Dirichlet case, we show that, for a star embedding based on routing a unit current between every 

vertex and the boundary, if the Laplacian L(G) has an eigenvalue A with eigenvector u, then TLrc/ has 

eigenvalue 1/A; the corresponding eigenvector is Bu, where B is the edge-vertex incidence matrix of the 

Laplacian. In this case, the Laplacian is positive definite; we show that TcfT^f is L~l. 

In both cases, we show the extension of these results to weighted graphs. 

In addition to their utility with respect to the problems listed above, our results are interesting because 

they provide further illustration of the utility of looking at Laplacian spectra problems with respect to 

electrical circuits. 

The rest of this paper is organized as follows: Section 2 provides an overview of work in this area. 

Section 3 covers the notation we use and background information on graphs and matrices. Section 4 covers 

general lemmas about our embedding representation. Section 5 covers the current flow embedding for the 

clique case. Section 6 covers the current flow embedding for the star case with Dirichlet boundary, and shows 

how to construct inverses using embeddings. Section 7 presents related results, including the connection 

between the results in this paper and previous lower bound techniques. 

2. Previous Work. The study of the connection between Laplacian spectra (particularly with respect 

to A2) and properties of the associated graphs dates back to Fiedler's work in the 1970's (see, e.g., [10] 

and [11]). These properties have been used in graph algorithms, particularly algorithms for finding small 

separators [17, 25, 28]. 

The relationship between graph embeddings and matrix representations has been the subject of much 

interesting research. A large proportion of this work has been aimed at bounding the second largest eigen- 

values of time-reversible Markov chains in order to bound the mixing time for random walks. The use of 

clique embeddings to bound eigenvalues arose in the analysis of mixing times for Markov chains by Jerrum 

and Sinclair [20, 27]. Further work in this direction was done by Diaconis and Strook [9] and by Sinclair [26]. 

Kahale [22] generalized this work in terms of methods assigning lengths to the graph edges, and showed that 

the best bound over all edge length assignments is the largest eigenvalue of the matrix rTr, where T is a 

matrix representing the path embedding (Kahale [22] also cited unpublished work by Fill and Sokal in these 



directions). He also gave a semidefinite programming formulation for a model allowing fractional paths, and 

showed that the bound is off by at most a factor of log2 n. He showed this gap is tight; he also noted that 

the results can be applied to Laplacians with suitable modifications. 

Guattery, Leighton, and Miller [15] presented a lower bound technique for A2 of a Laplacian. It assigns 

priorities to paths in the embedding, and uses these to compute congestions of edges in the the original 

graph with respect to the embedding. Summing the congestions along the edges in a path gives the path 

congestion; the lower bound is a function of the reciprocal of the maximum path congestion taken over all 

paths. For the clique case, they showed that this method is the dual of the method presented in [22]; the 

best lower bounds produced by these methods are the same. They also showed how to apply their method 

in the Dirichlet boundary case by using star embeddings. In the clique case, they showed that using uniform 

priorities for any tree T gives a lower bound that is within a factor proportional to the logarithm of the 

diameter of the tree. 

Gremban [14] has shown how to use embeddings to generate support numbers, which also are bounds on 

the largest and smallest generalized eigenvalues (and hence the spectral condition number) of preconditioned 

linear systems involving a generalized definition of Laplacians. He also defined the support tree precondi- 

tioner, and used the support number bounds to prove properties about the quality of these preconditioners. 

Gremban, Miller, and Zagha have evaluated the performance of these techniques [13]. 

The construction of the embedding we use below is related to the effective resistances between pairs of 

vertices in the graph when the graph is viewed as a network of unit conductances. Chandra et al [8] have 

defined the maximum such value taken over all distinct pairs as the electrical resistance of a graph, and have 

used that quantity to bound the commute and cover times of random walks on the graph. 

3. Terminology, Notation, and Background Results. We assume that the reader is familiar with 

the basic definitions of graph theory (in particular, for undirected graphs), and with the basic definitions 

and results of matrix theory. A graph consists of a set of vertices V and a set of edges E; we denote the 

vertices (respectively edges) of a particular graph G as V(G) (respectively E(G)) if there is any ambiguity 

about which graph is referred to. When it is clear which graph we are referring to, we use n to denote |V| 

and m to denote \E\. 

We use the term path graph for a tree that has exactly two vertices of degree one. That is, a path 

graph is a graph consisting of exactly its maximal path. A star is a tree with exactly one vertex that is not 

a leaf. We call the non-leaf vertex the center of the star. 

3.1. Matrices and Matrix Notation. We use capital letters to represent matrices and bold lower- 

case letters for vectors. For a matrix A, a^- or [A]ij represents the element in row i and column j; for the 

vector x, x, or [x]j represents the ith entry. The notation x = 0 indicates that all entries of the vector x 

are zero; 1 indicates the vector that has 1 for every entry. Unless specifically noted otherwise, we index 

the eigenvalues of an n x n matrix in non-decreasing order: Ai represents the smallest eigenvalue, and 

A„ the largest. We use the notation \i(A) (respectively Xt(G)) to indicate the ith eigenvalue of matrix A 

(respectively of the Laplacian of graph G) if there is any ambiguity about which matrix (respectively graph) 

the eigenvalue belongs to. The notation Uj represents the eigenvector corresponding to A*. 

We use the following notational shorthand: Let D be a diagonal matrix with nonnegative entries on the 

diagonal. Then y/D represents the diagonal matrix with [\fD]ü = yß^. If all diagonal entries of D are 

positive, it is obvious that y/D     — \/D~l. 

Ik denotes the k x k identity matrix. 

For two matrices A and B with the same dimensions, A > B if for every entry a,ij of A, we have a,j > fyj. 



Let X be a real matrix. Let Y — XTX and Z = XXT. Note that Y and Z are positive semidefinite, so 

any nonzero eigenvalues are positive. The following is a standard result (see e.g. [3] for a version related to 

Laplacians): 

LEMMA 3.1. Ifuis an eigenvector ofY with eigenvalue A > 0, then Xu is an eigenvector of Z with 

eigenvalue A. Likewise, i/v is an eigenvector of Z with eigenvalue ß > 0, then XTv is an eigenvector ofY 

with eigenvalue /i. Thus Y and Z have the same nonzero eigenvalues. 

Proof. Consider the first statement. Z(Xu) = XXT(Xu) = XYu = XXu, so the claim holds. Likewise, 

Y(XTv) = XTX(XTv) = XTZv = ßXTv, so the second statement holds. D 

3.2. The Laplacian Matrix Representation of a Graph. A common matrix representation of 

graphs is the Laplacian. Let D be the matrix with da = degree^) for V{ € V(G), and all off-diagonal 

entries zero. Let A be the adjacency matrix for G ([A]ij = 1 iff {vi,Vj) G E(G), 0 otherwise). Then the 

Laplacian of G is the matrix L = D — A. 

The following are useful facts about the Laplacian: 

• The Laplacian is symmetric positive semidefinite, so all its eigenvalues are greater than or equal to 

0 (see e.g. [3]). 

• A graph G is connected if and only if 0 is a simple eigenvalue of the Laplacian of G (see e.g. [3]). 

• The following characterization of A2 holds (see e.g. [10]): 

/„ , N > xTLx 
(3.1) A2 = min —=—. 

' xJ_l   X-'X 

• For any vector x and Laplacian matrix L of the graph G, we have (see e.g. [19]): 

(3.2) xTix =       Y2      (xi ~ xif 
(vi,Vj)€E(G) 

An edge-weighted graph is a graph for which a real, nonzero weight Wij is associated with each edge 

(vi, Vj). Fiedler extended the notion of the Laplacian to graphs with positive edge weights [11]; he referred 

to this representation as the generalized Laplacian. Let w^ be the (positive) weight of edge (i,j) in graph 

G. Then the entries of the generalized Laplacian L of G are defined as follows: la is the sum of the weights 

of the edges incident to vertex Vi\ for i ^ j and (vi, Vj) € E(G), kj = —u>ij, and Zy = 0 otherwise. 

With the exception (3.2), the properties listed above also apply to generalized Laplacians. A slightly 

modified version of (3.2) holds for the generalized Laplacian L: 

XTZ/X = 2_\ U>ij(Xi — Xj)2 

(vi,Vj)€E(G) 

We usually use L to denote the Laplacian of a graph G, and K to represent the Laplacian of the clique 

K (whether K refers to the graph or the Laplacian will be clear from context). 

3.3. Graph Subspaces with Respect to the Laplacian. It is well known (see e.g. [6, 7]) the the 

Laplacian of a graph G can be expressed as the product BTB of G's edge-vertex incidence matrix B. 

B is constructed as follows: Arbitrarily direct the edges of G, and index them from ltom. B is an m x n 

matrix, where row i has a —1 in the column corresponding to the vertex at its tail, a 1 in the column 

corresponding to the vertex at its head, and zeros in all other columns. 

Generalized Laplacians can also be expressed as a product involving the edge-vertex incidence matrix B. 

However, we must introduce an edge weight matrix W (also referred to as the conductance matrix). W 



is a diagonal matrix with entry [W]u equal to the weight of edge i. It is easy to check that the generalized 

Laplacian L = BTWB, and that L is independent of the directions of the edges in B. 

It is common to think of the set of vectors of length n as the vertex space; each entry of the vector 

x assigns the value Xi to corresponding vertex i (such an assignment of values is often referred to as a 

valuation). Likewise, the set of all vectors of length m is the edge space. Since we will use an electrical 

analogy below, we sometimes refer to the values assigned to vertices as potentials. Note that multiplying 

a vector of potentials on the left by B produces a vector of potential differences in the edge space: each 

entry in the result is the difference in potentials at the head and tail of some edge in G. 

The edge space of the graph can be partitioned into two orthogonal subspaces (see e.g. [5, 7]). The first 

is the cycle space, the subspace spanned by vectors representing cycles in G. A cycle C is represented by a 

vector as follows: The edges of C have a natural direction, where each edge is directed toward its successor 

in the cyclic order. For each edge e in C, the vector vc has entry 1 if the direction of e with respect to C 

and the direction of e used in defining the edge-vertex incidence matrix B are the same, and -1 if they are 

opposite. The entries for edges not in C are 0. 

The cycle space is the orthogonal complement of the cocycle or cut space, the subspace spanned by 

vectors representing cuts. Let (S, S) represent a partition of the vertices of a graph G into two sets. The set 

of edges with one end in S and the other in S is called a cut. Cuts are represented as vectors as follows: for 

each edge in the cut, if the edge has its tail in S (i.e., the edge is directed (according to B) from S to S), 

the vector entry for that edge is 1. If the edge has its head in S (i.e., the edge is directed from 5 to S), the 

vector entry for that edge is — 1. Entries for edges not in the cut are 0. 

It is well known that, for a connected graph G with m edges on n vertices, the dimension of the cycle 

space is m — n +1 and the dimension of the cut space is n — 1 (see, e.g., [7, Theorem 5 in Section II.3]). Some 

simple but useful results about the relation of the cycle space and cut spaces to the edge-vertex incidence 

matrix B are stated in the following lemma (the proofs are easy and left to the reader). 

LEMMA 3.2. Let G be a connected graph with edge-vertex incidence matrix B. Then 

• The span of the columns of B is the cut space of G, and any n — 1 columns of B form a basis for 

the cut space. 

• The cycle space of G is the null space of BT. 

3.4. Laplacians and Electrical Circuits. In this paper we consider the graph of a Laplacian as a 

resistive electrical circuit, with the edge weights representing conductances between the vertices or nodes 

(conductance is the reciprocal quantity to resistance). We also calculate quantities such as the current 

flows on the edges of the graph when unit currents are injected at one point and removed at others. These 

calculations can be defined in terms of three electrical laws. 

The first of these is Ohm's law, which connects potential differences and currents. We use it mainly in 

defining currents: as noted above, we can consider any valuation of the vertices as a vector of potentials 

or voltages. For any pair of vertices connected by an edge, we define the potential difference across the 

edge as the value at the head of the edge minus the value at the tail. Thus, given a vector v of voltages, ßv 

gives the vector of potential differences, which is in the edge space. Ohm's law says that the current on an 

edge is the potential difference times the conductance. Thus, for v we can define the vector i of currents as 

i = WBv, where W is the conductance matrix as discussed in Section 3.3. 

The second is Kirchoff's voltage law (KVL), which states that the potential drops around any cycle 

in the graph sum to zero. This requires that for any cycle c, cTBv = 0. The second point in Lemma 3.2 

shows this holds for our representation, which is thus consistent with KVL. 



The third law is Kirchoff's current law (KCL), which states that the net current flow at any vertex is 

zero; that is, the sum of the currents over all edges incident to a vertex is the negative of the current injected 

at that vertex. Note that multiplying a vector of currents (in the edge space) by BT sums the currents at 

the vertices. Therefore, if \ext is a vector of external currents injected into the circuit, KCL says that the 

resulting currents in the circuit (represented by the vector i) must obey 

(3.3) BTi = i ext- 

We frequently use KCL as a requirement in calculating flows in the circuit given a unit current injected at 

one vertex and extracted at another. This is equivalent to solving for i in (3.3). Note that for a solution to 

exist, the amount of current injected and extracted in iext must be equal; we must have rjxtl = 0. This is 

equivalent to the condition that iext be in the column space of BT, or that it is orthogonal to the null space 

of B, which is 1. 

3.5. Graph Embeddings. Let G and H be connected graphs such that the vertex set of H is a subset 

of the vertex set of G. An embedding of H into G is a collection Y of path subgraphs of G such that for 

each edge (vt,Vj) £ E(H), the embedding contains a path 7^ from Vi to Vj in G. For full generality, we 

will allow fractional paths in our embeddings: i.e., an edge (vi,Vj) 6 E(H) can be associated with a finite 

collection of paths from Vi to Vj in G; each such path has a positive fractional weight associated with it such 

that the weights add up to 1. If a path 7 includes edge e, we say that 7 is incident to e. 

4. Representing Graph Embeddings with Matrices. Let G be a connected graph, and let T be 

an embedding of H into G. Consider the following observation: Each vertex appears at most once on any 

path 7 er. Therefore we can choose one end of the embedded edge e = (u, v) € E(H) as a source node (say 

u), and the other (say v) as the sink node, and order path edges in sequence from uto v. A path (or set of 

fractional paths) for e in the embedding can thus be viewed as a unit flow from u to v, where the net flow 

into any intermediate vertex is zero. 

These flows can be represented as vectors in the edge space. For the purposes of our representation, we 

assume that directions have been assigned arbitrarily to the edges of G, and that the vertices and edges of G 

have been indexed from 1 to n and from 1 to m respectively. Let e = (u, v) be an edge in H; e is represented 

in the embedding as a unit flow in G. In the vector for a flow, each edge gets a value with magnitude equal 

to the amount of the flow it carries. The entry for each edge in the flow also has a sign: positive if the flow 

direction agrees with the edge direction, and negative if the flow is opposite the edge direction. 

The flow vectors can be assembled into a matrix representing an embedding. We will use the symbol 

r to represent the embedding matrix as well as the embedding; the use should be clear from context. The 

matrix V includes one row for each edge e in H; that row is the flow vector for the embedding of e into G. 

Thus T is a \E(H)\ x |i?(G)| matrix. Note that T depends on both G and H; these graphs will be clear 

from context, so we will not introduce any notation to express this dependency. This matrix representation 

is similar to the representation presented in [21], though it differs by including negative entries. We discuss 

the relationship between these two representations in Section 7 below. 

The following result holds for arbitrary H embedded into connected graph G: 

LEMMA 4.1. For any embedding matrix F representing an embedding of H into G, the product FB(G) — 

B(H), where the vertex set of B(H) is V{G). 

Proof. Consider the result of multiplying a row of T and a column of B. The column of B represents a 

vertex v of G. It is easy to see from the construction of the rows of T that this product gives the net flow 

out of v. We thus have the following: 



• If f is the source of the flow, then the product is —1. 

• If i; is the sink of the flow, then the product is 1. 

• Otherwise, the value is 0. 

Thus, the row of FB(G) corresponding to the flow for edge (u, v) has a —1 in the column for u, a 1 in the 

column for v, and zeros elsewhere. This is the same as the row for (u, v) in B(H), where the edge directions 

correspond to the directions of the flows used in the embedding. D 

It is useful to define the matrices M = YTY and N = ITT. M is \E(G)\ x \E(G)\, N is \E{H)\ x \E(H)\. 

The results in the rest of the paper are based on a special embedding we refer to as the current flow 

embedding. This embedding is defined for any generalized Laplacian as follows: The graph G serves as a 

network of conductances, where the conductance of each edge is its (positive) weight. For each edge (u, v) 

in H, the flow from u to v is the same as the current flow in G when a unit current is injected at u and 

extracted at v. Since the currents obey Kirchoff's laws, the set of flows clearly forms an embedding of H into 

G. We note that this embedding can be extended to cases with a Dirichlet boundary condition by adding in 

a ground node; details of this extension are deferred to Section 6 below. 

We denote this embedding Tcf. Mcf and Ncf denote the matrices M and N for the embedding matrix 

Tcf. 

The following results about Tcf are useful below: 

LEMMA 4.2. Let G be an unweighted connected graph, and let H be a graph on V(G) with a nonempty 

edge set. Let Tcf be as defined above for the embedding of H into G. Then the cycle space of G is in the 

null space of Tcf. 

Proof. This lemma is a consequence of each flow in the embedding obeying Kirchoff's laws. 

Note that each row of Ycj is the transpose of a current vector i. Because each such current vector is 

consistent with KVL and KCL, it is a well-known result that there exists a potential vector v (which is not 

unique) such that i = WBv by Ohm's law. For an unweighted graph W = Im, so this simplifies to i = Bv. 

The cycle space is the null space of BT by Lemma 3.2, and hence the left null space of B, so for any vector 

c in the cycle space, cTi = cT£?v = 0. This holds for every row in rc/, and hence the theorem holds. D 

A similar result holds if G is a weighted graph: 

LEMMA 4.3. Let G be a weighted connected graph with conductance matrix W, and let H be a graph on 

V(G) with a nonempty edge set. Let Tcf be as defined above for the embedding of H into G. Then for any 

vector c in the cycle space of G, W_1c is in the null space ofTcf. 

Proof. The proof is the same as for the preceding lemma, except that W is no longer the identity matrix. 

However, the vector c is now scaled by W_1, and the reader can check that the terms W and W_1 cancel 

each other in the argument. D 

This result can be stated in slightly altered form; it is no longer consistent with the electrical analogy, 

but it is useful in algebraic arguments below: 

COROLLARY 4.4. Let G be a weighted connected graph with conductance matrix W, and let H be a graph 

on V(G) with a nonempty edge set. Let Tcf be as defined above for the embedding of H into G. Then for 

any vector x in the cycle space of G, \ZW_1x. is in the null space o/rc/\/W
_1. 

Proof. Since W"1 is a diagonal matrix with positive real entries on the diagonal, we can factor it into 

VW_1 ■ VW_1. The result follows from Lemma 4.3. D 

We next consider the special properties of the Current Flow embedding with respect to embedding 

particular graphs into G. 



5. The Clique Embedding Tcf. We now show that there is an exact connection between clique 

embeddings and Laplacian eigenvalues. Let G be a connected graph on n vertices with positive edge weights 

and Laplacian L = BTWB, where B is the edge-vertex incidence matrix and W is the conductance matrix 

as defined in Section 3.3. Let Tcf be the embedding matrix for the current flow embedding of the complete 

graph into G, with Mcf defined as in the previous section. For clarity's sake, we start with the result in the 

case where G is unweighted (that is, W is the identity matrix). 

THEOREM 5.1. Let G be an unweighted connected graph on n vertices with Laplacian L. Let Mcf = 

T^fTcf, where Tcf is the current flow embedding of the complete graph on n vertices into G. For any A > 0, 

A is an eigenvalue of L if and only if j is an eigenvalue of Mcf. Further, if A has eigenvector u for L, then 

Bu is an eigenvector of Mcf with eigenvalue j. 

Proof. By Lemma 4.1, BTY^YcfB = K, where K is the Laplacian of the complete graph on n = |V(G)|. 

It is easy to show that, for any vector x such that xTl =0, Äx = nx. Thus for any such x we have the 

following: 

(5.1) BTMcfBx = BTr^fTcfBx = nx. 

Since the rank of K is n — 1, the preceding result implies that the ranks of Mcy, rc/, and T^, are all at 

least n — 1. 

Lemma 4.2 shows that the null space of rc/ contains the cycle space of G. The dimension of the null 

space is thus at least m — n + 1; combining this with the result from the previous paragraph shows that the 

null space is exactly the cycle space, and that the rank of Tcf (and hence of T^) is n — 1. The null space 

of Mcf contains the null space of rc/, and the same results hold for its rank and null space. Mcf is clearly 

symmetric positive semidefinite from its definition. 

Let x be any vector in the cut space of G. Since Mcf is symmetric with the cycle space of G as its null 

space, Mc/x is orthogonal to the cycle space. 

Let u be an eigenvector of L with eigenvalue A > 0. Then 

BTMcfBu = nu=^Lu = BTB^. 
A A 

Thus 

BT (McfBu - jBu) = 0, 

which implies that McfBu — jBu is in the null space of BT. By Lemma 3.2, this means it is in the cycle 

space of G. But we showed above that McfBu is orthogonal to the cycle space. Further, Lemma 3.2 also 

implies that 5u lies in the cut space of G, and is therefore orthogonal to the cycle space. Thus we must 

have that McfBu = jBu. Thus Bu is an eigenvector of Mcf with eigenvalue j. 

We still need to show that Mcf does not have any other nonzero eigenvalues. Let u be any eigenvector 

of Mcf with eigenvalue \i. Since the null space of Mcf is the cycle space of G, u is in the cut space. By 

Lemma 3.2, this is in the column space of B, and we can find a vector x such that Bx = u; further, we can 

choose x such that xTl =0. Then 

(5.2) /zu = McfVL = McfBx — ßBx. 

Since x is orthogonal to 1 we can use (5.1) with (5.2) as follows: 

nx = BTMcfBx = nBTBx = /xLx. 



Thus x is an eigenvector of L with eigenvalue A = ^. That is, for any eigenvalue \i of Mcf, there is an 

eigenvalue A of L such that ß = j, and the correspondence between eigenvalues accords with the theorem 

statement. D 

Note that if v. is an eigenvector corresponding to a nonzero eigenvalue of Mcf, B
T\ is an eigenvector of 

L. 

5.1. Extending the Results to the Weighted Case. Extending the results about Mcf to the 

weighted case is straightforward. We now need to take into account the matrix W in the calculations; 

otherwise the argument is similar. 

THEOREM 5.2. Let G be a connected graph on n vertices with positive edge weights, conductance matrix 

W, and generalized Laplacian L. Let Mcf — T^Tcf, where Tcf is the current flow embedding of the complete 

graph on n vertices into G. For any X > 0, X is an eigenvalue of L if and only if j is an eigenvalue of 

McfW~l. Further, if X has eigenvector u for L, then WBn is an eigenvector of McfW~x with eigenvalue 
n 
A- 

Proof. The theorem is stated so as to emphasize the connection with the electrical interpretation; we 

will actually prove the result for the similar matrix 

VW^McfVW-1 = \fwzl (MafW-1) JW. 

This similarity transform corresponds to a change of variable in the theorem statement. We will actually 

prove that for any eigenvector u of L with eigenvalue A > 0, \/WBu is an eigenvector of VW~^McfVW~^ 

with eigenvalue j. We will also show that \/W~1Mcfy/W~1 has no other eigenvalues. It is easy to verify 

that these results imply the theorem. 

We again use Lemma 4.1 to show that 

BTVW (Vw^McfVw^^j VWB = BTMcfB = BTT^fTcfB = K, 

and hence that, for any vector x such that xTl = 0, 

: (yw^McjVw-A BTVW (VW^McfVW-1) VWBx = nx. 

Since the rank of K is n — 1, the preceding result implies that the ranks of \/W~1McfVW~1, Tcfy/W~l, 

and vR^rJf are all at least n — 1. 

By Corollary 4.4, the null space of Ycf\/W~l contains the cycle space of G multiplied by \/W~x. Because 

y/W~l is an invertible matrix, the dimension of the null space is thus at least m — n + 1. Combining this 

with the result from the previous paragraph shows that this is exactly the null space, and that the ranks of 

TcfVW-1, VW-1^, and y/W^M^y/W-1 are n - 1. 

Through the rest of this proof, we will use the notation Co to denote y/W-1 times the cycle space of G; 

that is, the null space of VW~1McfVW-1 is Co- Using Lemma 3.2 and the fact that W is invertible, it is 

easy to show that Co is the null space of BTVW, and is orthogonal to the column space of y/WB. 

Because v/W_1Mc/v
/W_1 is symmetric with the Co as its null space, v/W_1Mc/v

/W_1x is orthogonal 

to Co for any vector x in the edge space. 

Let u be an eigenvector of L with eigenvalue A > 0. Then 

BTVW (Vw^McfVW^) VWBu = BTMcfBu = nu = ^Lu = BTWB^. 

Thus 

BTVW (Vw^McfVw^iVWBu) - ^(vWßu)) = 0, 



which implies that VW^McfVW^iVWBu) - ^(y/WBu) is in C0, the null space of BT\/W. But we 

showed above that the first product is orthogonal to Co- Further, the second product is in the column space 

of y/WB, which we noted above is orthogonal to Co- Thus the two products must be equal, and VWBu is 

an eigenvector of VW~1McfVW~1 with eigenvalue j. 

We still need to show that y/W~1Mcf\/W-1 does not have any other nonzero eigenvalues. Define C\ 

to be the subspace that results from transforming the cut space of G by multiplying it by \fW. Since \/W 

is invertible, C\ has dimension n — 1; we noted above that it is orthogonal to Co- Because (the symmetric 

matrix) v/H/_1Mc/v
/W_1 has null space Co, any eigenvector of a nonzero eigenvalue must come from C\. 

Let u e C\ be any eigenvector of \/W~1Mcf\/W~1 with eigenvalue \i > 0. By the definition of C\, 

there is a vector z in the cut space of G such that z = VW~^u. We showed in the proof of Theorem 5.1 

that for any vector z in the cut space, there is a vector x in the vertex space such that Bx = z and xTl = 0. 

Thus we can write u = y/WBx for the appropriate such x. 

Then 

(5.3) /m = VW^McfVw^u = VW^McfVW-^VWBx.) = fiVWBx. 

Since x is orthogonal to 1 we can use (5.1) with (5.3) as follows: 

nx = BTVW (v/WFrTMc/v
/WrT) VWBx = fiBTWBx = ßLx. 

Thus x is an eigenvector of L with eigenvalue A = jj. That is, for any eigenvalue (j, of y/W~1McfVW~1, 

there is an eigenvalue A of L such that \i = j, and the correspondence between eigenvalues accords with the 

theorem statement. D 

6. The Star Embedding Tcf. We now turn to the case of a graph with Dirichlet boundary conditions. 

Such a graph has a set Sb of boundary vertices; the values of these vertices are constrained to be zero. The 

problem we wish to solve is determining the set of valuations on the nonboundary (interior) vertices that 

have the property that the values are scaled by a constant when the Laplacian operator is applied to the 

valuation. 

This problem can be described in matrix terms as follows. Let G be a connected graph with boundary set 

Sb- Without loss of generality, we can assume that G has no edges between pairs of boundary vertices; such 

edges can be deleted without changing the solution of the problem. In this section, we will use n to denote 

the number of interior vertices of G, and m to denote the number of edges of G. Let B be the edge-vertex 

incidence graph subject to the conditions that all edges between boundary and interior vertices are directed 

away from the boundary, and that the boundary vertices are numbered last. Define B as the restricted 

version of B with all columns corresponding to vertices in Sb deleted. The Laplacian L is defined as BTB. 

The problem stated in the previous paragraph is equivalent to finding the eigenvalues and eigenvectors of L. 

If the edges of G have positive weights assigned to them, we represent the weights in a conductance 

matrix W. In the weighted case, L = BTWB. 

In this section we will study this problem in terms of star embeddings into G. Specifically, we will map 

all boundary vertices to the center of the star, and embed a path (or, more generally, a set of fractional 

paths) from each interior vertex to the boundary. The path (or set of paths) for each interior vertex can be 

represented in a matrix T as described in Section 4. Note that each row of T corresponds to a vertex in the 

interior; we require that the ordering of the rows in T corresponds to the ordering of the vertices in B. 

For the rest of the section, we will assume that G is a connected graph with zero boundary Sb, n interior 

vertices, and m edges.  We also assume that B and L have been defined consistent with the restrictions 
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specified above, and that any embedding matrix V has its row order consistent with the vertex order. 

The first lemma of this section is analogous to Lemma 4.1: 

LEMMA 6.1. For any star embedding into G, YB = In. 

Proof. By Lemma 4.1, TB = B* is the edge-vertex incidence matrix for the star. The conditions on 

ordering insure that edge i of the star is an edge from the boundary to vertex i. Thus, [B*]u = 1. The only 

other entry in row i is in a column associated with a boundary vertex. Dropping the boundary columns to 

produce B results in the dropping of the corresponding columns from the product. D 

The following corollary is useful in proofs below: 

COROLLARY 6.2. For any star embedding into G, BTTTTB = In. 

Proof. The result is obvious since 

BTTT = (rB)T = /J. ■ W 
D 

The current flow embedding rc/ of the star is defined as above. In electrical terms, the boundary vertices 

serve as grounds. Therefore these vertices are combined into a single ground node in the electrical circuit. 

Each current flow is computed with respect to a unit current injected at an interior vertex and extracted at 

the ground node. 

It is useful to think of the circuit in terms of a graph Go that consists of the interior vertices of G plus 

a single boundary vertex VQ. The edges of Go include all edges between interior vertices of G, plus an edge 

(vi, Vo) for every edge between a vertex Vi and some boundary vertex (if the graph is weighted, the edge in G 

and the corresponding edge in Go have the same weight). Go has m edges and n+1 vertices, so the size of its 

cycle space is m — n and the size of its cut space is n. It is obvious that B(GQ) = B(G) and L(Go) = L(G), 

so this does not change the solution we are looking for. By construction, the current flow embedding of the 

star into G and Go are the same. 

The following theorem gives the connection between Tcf and the eigenvalues and eigenvectors of L: 

THEOREM 6.3. Let Mcj — r^Tc/. For any X > 0, X is an eigenvalue of L if and only if j is an 

eigenvalue of"MC$W~X. Further, if X has eigenvector u for L, thenWBu is an eigenvector of McjW~l with 

eigenvalue j. 

Proof. The argument is essentially the same as that for Theorem 5.2. As for that theorem, the theorem 

statement emphasizes the connection with the electrical interpretation; we will actually prove the result for 

the similar matrix 

Vw^McfVw^ = Vw-1 (McfW-1) Vw. 

This similarity transform corresponds to a change of variable. We will actually prove that for any eigenvector 

u of L with eigenvalue A > 0, VWBu is an eigenvector of y/W~1Mcf\/W~1 with eigenvalue j. We will 

also show that y/W~1Mcfy/W~1 has no other eigenvalues. It is easy to verify that these results imply the 

theorem. 

By Corollary 6.2, 

BTVW (Vw^McfVw^) VWB = BTMcfB = BTYT
cfTc}B = /„, 

and hence that, for any vector x in the vertex space, 

(6.1) BTVW (Vw^McfVw^) VWBx. = x. 
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Since the rank of In is n, the preceding result implies that the ranks of VW~1McfVW~1, Tcf\/W~l, and 

\/W_1r^ are all at least n. Since n is one of the dimensions of rc/, it is exactly the rank of Ycf\fW~^ and 

VW^r^. VW~1McfVW~1 is the product of these matrices, and thus has rank less than or equal to n; 

this implies that it too has rank exactly n. 

We can apply Lemma 4.3 and Corollary 4.4 to Go: For any vector x in the cycle space of Go, W~lx is 

in the null space of Tc/. Further, for any vector x in the cycle space of Go, \/W_1x is in the null space of 

rcfVW^. 
Because VW~X is an invertible matrix, the dimension of the null space is thus at least m — n. Combining 

this with the result from the previous paragraph shows that this is exactly the null space. Through the rest 

of this proof, we will use the notation Co to denote the the null space of TcfJW~l and of VW~1Mcf\/W~1. 

Using Lemma 3.2 and the fact that W is invertible, it is easy to show that Go is the null space of BT\/W, 

and is orthogonal to the column space of v WB. Since B is derived from B by dropping a column (with 

respect to Go), we immediately have that Go is the null space of BTVW, and is orthogonal to the column 

space of y/\VB. 

Because VW~1Mcf\/W~1 is symmetric with the Go as its null space, VW~lMcf\/W~1x. is orthogonal 

to Go for any vector x in the edge space. 

Let u be an eigenvector of L with eigenvalue A > 0. Then 

BTVW (Vw^McfVw^) VWBu = BTMcfBu = /„u - u = ±Lu = BTWB{ . 
^ ' A A 

w \iw i vw-J-McfVW~± I vwttu = ts~ Mcftsu = lnn — u =    f        "T,"A 

Thus 

BTVW (VW^McfVw^iVWBu) - hVWBu)\ = 0, 

which implies that VW-1McfVW-1(VWBu) - \{s/WBu) is in G0, the null space of BT\fW. But we 

showed above that the first product is orthogonal to Co. Further, the second product is in the column space 

of VWB, which we noted above is orthogonal to Go- Thus the two products must be equal, and y/WBu is 

an eigenvector of VW~1Mcf^/W~1 with eigenvalue j. 

We still need to show that v/WA_1Mc/v
/W^_1 does not have any other nonzero eigenvalues. Define C\ to 

be the subspace that results from transforming the cut space of Go by multiplying it by \/W. By Lemma 3.2, 

the columns of B are a basis for the cut space of Go, so the columns of \/WB form a basis for C\. We noted 

above that y/WB is orthogonal to Go- Since VW is invertible, C\ has dimension n. Because (the symmetric 

matrix) VW~^McfVW~^ has null space Go, any eigenvector of a nonzero eigenvalue must come from C\. 

Let u e Ci be any eigenvector of \/WA_1Mc/v
/WA_1 with eigenvalue \i > 0. By the definition of C\, 

there is a vector z in the cut space of Go such that z = \/W_1u. Since the columns of B are a basis for the 

cut space of Go, there is a vector x in the vertex space restricted to the interior vertices such that Bx = z. 

Thus we can write u = y/WBx. for the appropriate such x. 

Then 

(6.2) ^u = VW^McfVW^u = Vw^McfVW^iVWBx) = nVWBx. 

We can use (6.1) with (6.2) as follows: 

x = BTVW (yW^MafVW11^ VWBx = fiBTWBx = pLx. 

Thus x is an eigenvector of L with eigenvalue A = i. That is, for any eigenvalue fi of VW^M^y/W'1, 

there is an eigenvalue A of L such that ß— \, and the correspondence between eigenvalues accords with the 

theorem statement. D 
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6.1. Current Flow Embeddings and Inverses. We can use Theorem 6.3 to prove the following 

theorem about the inverse of L: 

THEOREM 6.4. rc/W
_1rJy is the inverse of L. 

Proof. L is an n x n nonsingular real symmetric matrix. Therefore we can write any n-vector x as a 

weighted sum of eigenvectors of L. Showing that TcfW~1T'^fLu = u for every eigenvector u of L is sufficient 

to prove the theorem. 

FcfW'^Tf can be rewritten as (TcfVW~1)(VW~1T'^f). We can apply Lemma 3.1 to show that if v is 

an eigenvector of (VW-1rJf)(Tcf\/W-1) = VW^McfVW-1 with eigenvalue fi > 0, then Tcf\/W-^v is 

an eigenvector of rc/W
-1r^ with eigenvalue /x. 

Let u be any eigenvector of L with eigenvalue A. By Theorem 6.3, \fWBu is an eigenvector of 

y/W~1McfVW~1 with eigenvalue j. By the result from the preceding paragraph, rc/ VW~x y/WBu is 

an eigenvector of rc/W
_1r^ with eigenvalue j. Applying Lemma 6.1 gives the following: 

TcfVW^VWBu = TcfBu = u. 

Hence u is an eigenvector of YcfW~lY^f with eigenvalue j. 

Combining these results gives the following: 

TcfW-^flu = XTcfW-^fU = A^ = u. 
A 

This holds for every eigenvalue of L, which proves the theorem. D 

7. Current Flow Embeddings and Lower Bound Techniques. 

7.1. Connections with Previous Embedding Techniques. We now discuss our results in light of 

previous embedding techniques used to bound Laplacian eigenvalues. For the sake of simplicity, we will focus 

on unweighted graphs in this section. Details for weighted graphs can be found in the references cited. 

We will discuss two general methods. The first, which we call the edge length method, was presented 

by Kahale in [22]. It works as follows: 

• Specify a clique embedding for the graph, and assign each edge a positive length. 

• Compute the length of each path with respect to the edge lengths. 

• For each edge, compute the sum of the lengths of all incident paths divided by the length of that 

edge. Let pmax be the maximum such value taken over all the edges. Then —2— is a lower bound 
Pxnax 

for A2. 

The original statement is in terms of an upper bound on the second largest eigenvalue of a reversible Markov 

chain, but, as Kahale notes, can be reformulated so as to apply to Laplacians. 

The second is the path resistance method, presented by Guattery, Leighton, and Miller in [15]. It works 

as follows: 

• Construct a clique embedding into G. 

• For each edge e^- in G, compute its congestion Cjj.  In the unweighted case, the congestion of an 

edge is the number of paths that are incident to it. 

• For each path P and each edge e^ on P allocate a resistor of size dj to P. 

• For each path P compute its resistance, i.e., YleiePCiJ- ^et r be the maximum resistance over all 

paths. Then ^ is a lower bound on A2. 

These methods are duals of each other in the sense that, given an embedding, the best possible bounds 

produced by the two methods are the same [15].   This is most easily understood in terms of a matrix 
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representation introduced by Kahale [22], who showed that the edge length method could be viewed as 

an eigenvalue problem. The representation uses an embedding matrix similar to the one used throughout 

this paper, except that no edge directions are used, so the embedding matrix is nonnegative. Thus, if T 

is an embedding matrix as defined above, then |r| is Kahale's form of the embedding matrix for the same 

embedding. The statement of the bound problem in terms of an eigenvalue problem is as follows: Let T be 

the matrix for a clique embedding into connected graph G. Then 

(7.1) A2(G) > 
Amax(|r|r|r|)- 

The assignment of edge lengths in this method corresponds to multiplying a vector of lengths by the matrix 

|r|T|r|. The eigenvector for Amax (|r|
T|r|) is the best length assignment. 

In [15], Guattery, Leighton, and Miller show that the path resistance method can be viewed in terms of 

the following problem: For T as in the paragraph above, 

n 
(7.2) A2(G) > - «(|rW)- 

Note that, by Lemma 3.1, this is the same bound as in (7.1). Note also that these expressions can be 

applied to weighted graphs (generalized Laplacians) by including the conductance matrix: the matrices in 

inequalities (7.1) and (7.2) become Irfiri^-1 and |r|W_1fr|r respectively. 

Reference [15] also extends the technique to the Dirichlet boundary case through star embeddings: For 

connected graph G with Dirichlet boundary S, let T be the matrix for a star embedding. Then 

Ai (Go) > - -c(irW)- 

These results present the problem of bounding an eigenvalue of one matrix in terms of finding an 

eigenvalue of another; in practice one does not do that, but instead finds a good approximation to the 

largest eigenvector of |r|T|r|. In many cases where the goal is to bound A2 asymptotically for a family of 

graphs with regular structure, a reasonable approximate vector is relatively easy to find. In other cases, the 

following technique from [21] can be used: Note that the matrices |r|T|r| and |r||r|r are nonnegative. In the 

clique embedding case, the matrix is irreducible because the graph is connected. In the star embedding case, 

we can consider the connected components that result when the boundary is deleted; the resulting pieces are 

irreducible. For irreducible nonnegative matrices, the eigenvalue with the largest magnitude is positive; one 

can start with a positive vector and repeatedly multiply it by the matrix |r|T|r| to get improved estimates. 

In the following sections, we present lemmas that connect results from this paper to previous techniques 

described above. This allows us to show that the earlier techniques can produce exact bounds for certain 

classes of graphs. Finally, we give an example to demonstrate some of these results. In particular, it shows 

that including edge directions can give improved bounds when the repeated multiplication method is used. 

In the next two sections, we state results for weighted graphs in the interest of generality. 

7.2. Technical Lemmas. Let G be a connected graph with conductance matrix W and edge-vertex 

incidence matrix B and Laplacian L = BTWB. In the Dirichlet boundary case, we assume that the subgraph 

induced by the interior vertices is connected, and we use the Laplacian L as defined in Section 6. As in the 

previous sections, T is an embedding matrix, and M = TTT. We will use Tcf and Mcf when the embedding 

is the current flow embedding. In all cases, we assume that all embeddings and B for a particular graph use 

the same indexing. Whether the embedding is a clique or a star will be clear from context. 
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The following two lemmas and their corollaries show that we can drop the absolute values from the 

previous statement of the lower bound problem, and state it in terms of rTrW-1. Further, for the embedding 

rc/, the result is exact. 

LEMMA 7.1. For any clique embedding V, Amax(MW-1) > Amax(Mc/iy
_1), and n/Amax(MVK_1) < 

A2(G). 

Proof. As in Theorem 5.2, we will use the symmetric matrix y/W~1M\/W~1, which is similar to MW-1, 

to prove the result. 

The Courant-Fischer Minimax Theorem (see, e.g., [12] or [29]) implies the following: 

x      / /ÜTT», f^^ ^         xT(v/WrTMv/VFr)x Amax(vT^-1MVW-1) > max—- = —. 
x^O X-"X 

This inequality holds for x = VWBu2, where U2 is the eigenvector corresponding to Aa(G), and B is the 

edge-vertex incidence matrix for G. Then we have 

W    " x U, Lu2 X2 Un U2        A2 (yWBvL2)    (\/WBu2) 

where the next-to-last equality follows from an application of Lemma 4.1 to the denominator as it is applied 

in the proof of Theorem 5.2. This proves the second claim in the theorem statement. Theorem 5.2 implies 

n 
Amax(v

/iFTMc/v
/Wrr) 

A2 

which, when combined with the previous result, proves the first claim. D 

COROLLARY 7.2. Let L be the generalized Laplacian of connected graph G with conductance matrix W. 

For any clique embedding Y, X2(L) > n/ Xma.x(TTYW~1). Further, if the current flow embedding Ycf is used, 

then equality holds in the expression above. 

Proof. This follows directly from Lemma 7.1 above, with M rewritten as rrr. D 

Similar results hold in the Dirichlet boundary case: 

LEMMA 7.3. In the Dirichlet boundary case, for any star embedding T, Amax(MW-1) > Amax(Mc/VT_1), 

andl/Amax(MW-1)<A2(G0). 

Proof. The proof is essentially the same as for Lemma 7.1, though it uses Theorem 6.3 rather than 

Theorem 5.2, and the eigenvector of the smallest eigenvalue of L rather than \i2. Details are left to the 

reader. D 

COROLLARY 7.4. Let L be the generalized Laplacian of connected graph G with conductance matrix W 

and zero boundary S. For any star embedding T into Go, Ai(L) > l/Amax(r
TrW1). Further, if the current 

flow embedding Fcf is used, equality holds in the expression above. 

Proof. This follows directly from Lemma 7.3 above, with M rewritten as rrr. D 

The following technical lemma will simplify the proof of Lemma 7.6: 

LEMMA 7.5. Let X be anmxn matrix. Then Amax (|X
rX|) < Amax (|X|r|X|). 

Proof. It is well known that, for nonnegative matrices A > B, Amax(A) > Amax(.B) (see, e.g. [23, p. 38]). 

Thus the lemma holds if we show that, for all 1 < i < n and 1 < j < n, [\XTX\].. < [\X\T\X\]... Let 

Xi represent column i of X. For any i and j, it is clear that l-X/X^I < |Xi|T|Xj|. Since the terms in the 

inequality are the values of the desired matrix entries, the lemma holds. D 

We now show that we can use |rTr|W-1 to compute lower bounds that are at least as good as those 

computed using |r|T|r|iy-1: 
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LEMMA 7.6. For any embedding T, 

< n 

Am«(|rnr|w-i) - Amax(|rrr|w-i) FrTT<A2. 

Proof. By Lemma 7.5, Amax(|r|T|r|W-1) > Xm^dT^W-1), which proves the first inequality. 

To show the second inequality, note that for real symmetric matrix A, Amax(j4) < Amax(|.A|). (To see 

this, let u be a unit-length eigenvector for Amax(A), and compare the products uTAu and |u|T|.4||u|.) Then 

Lemmas 7.1 and 7.3 imply the desired result. D 

Since |rTr|W_1 is a nonnegative matrix, it can be used with the repeated multiplication algorithm. 

7.3. Classes for Which Previous Techniques Give Tight Bounds. Note that for trees there is a 

unique clique embedding. Note also that for trees with a single zero-value boundary point, there is a unique 

star embedding. In certain cases, it is possible to set the edge orientations in the edge-vertex incidence matrix 

so that the entries in the embedding matrix T are all positive. In that case, TTr, |rTr|, and |r|T|r| are all 

the same matrix, and the desired eigenvalue can be computed exactly in terms of Amax(|r|T|r|). Thus the 

results from the previous section imply that the best lower bounds derived using techniques in [21] and [15] 

are exact. We will show this for two cases, one for the clique embedding, one for the star. 

The first case we cover is the Laplacian form of a result shown in the birth-death chain example from [21]: 

If L is the generalized Laplacian of any weighted path graph with conductance matrix W, then there is an 

embedding such that n/Amax(|r|r|r|W^_1) = \2(L). To see this, note that we can index the vertices in 

order along the path, and that we can direct every edge from the lower-index vertex to the higher-index one. 

Likewise, direct every path in the clique embedding from the lower-index vertex to the higher-index one. 

There is only one possible embedding, and the choices of path and edge directions insures that all entries in 

the embedding matrix T are positive. Thus 

— -A 
Ä2 

(r^frcfw-1) = Amax(|rf|r|w -i\ 

In the star case, a similar result holds for trees with a single zero-value boundary point. In this case, 

every edge lies on a path from some vertex to the boundary; the vertex at one end of the edge is closer to the 

boundary than the vertex at the other. Direct each edge toward its endpoint that is closer to the boundary 

vertex. Likewise, direct each path in the embedding toward the center of the star. The embedding is unique, 

and 

1 
tf&cfW-1) Amax(|rf iriw-1). 

7.4. A Simple Example. We now use a cycle on four vertices to demonstrate the case where previous 

lower bound techniques are not exact. We number the vertices in clockwise order, and also direct the edges 

in clockwise order. The edge-vertex incidence matrix B and the Laplacian L are shown below: 

B 

1 1 0 0 

0 -1 1 0 

0 0 -1 1 

1 0 0 -1 

L = 

2 -1 0 -1 

-1 2 -1 0 

0 -1 2 -1 

-1 0 -1 2 

The eigenvalues of L are A = 0, A = 2 with multiplicity 2, and A = 4. 

The previous embedding techniques cannot produce an exact bound for this problem; as shown in the 

corollary to the following lemma, the best lower bound they can produce is 4/3. 
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We use dij to denote the distance (in terms of number of edges) between vertices Vi and Vj. 

LEMMA 7.7.   For L the Laplacian of an unweighted graph, the best lower bound on \2(L) produced by 

the edge length or path resistance methods is less than or equal to mn/ £\ ■ d\,. 

Proof. The lower bound for any embedding T is n/Amaa;(|r|T|r|). For any x, 

(7.3) 
xT|r|T|r|x <Amax(|r|

T|r|). 

Set x = 1, the vector of length m of all ones. The entries of |r|l are the row sums of |r|. If a row represents 

a single path, there is an entry of 1 for each edge in the path. The sum in this case is the length of the 

path, which is at least the distance between the endpoints. If a row represents a set of fractional paths, the 

row sum is the sum over each fractional path of the product of the fractional weight times the path length. 

Since the fractional weights must add to 1, the row sum is at least the distance between the endpoints of 

the path. We get one entry in |T|x for each edge in Kn. 

Note that the numerator of the left hand side of (7.3) is just the dot product of |T|x with itself, which 

by the previous paragraph is at least £\ . d^ (since da = 0 for all i, we can add these terms into the sum 

without penalty). 

The denominator xTx is m, the length of the vector. Thus 

2-,ij uij 

m 
< Ama*(|rf |r[ 

Applying (7.1) and the duality of the edge length and path resistance methods gives the result in the lemma 

statement. D 

COROLLARY 7.8. For the cycle on four vertices, the best lower bounds from the path resistance or edge 

length methods are no bigger than 4/3. 

Proof. Apply Lemma 7.7. The cycle has 4 pairs of vertices at distance 1 and 2 pairs at distance 2, so 

the sum of the squares of the distances is 12. Dividing mn = 16 by this number gives the result. D 

Thus, these methods do not produce exact results for our example cycle. The following (undirected) 

embedding matrix will produce the lower bound of 4/3: 

|r| = 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 
1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

|if|r| 
3 1 1 1 

1 1 3 1 1 
2 1 1 3 1 

1 1 1 3 

By adding edge directions, however, we can produce an exact lower bound.   Consider the following 

embedding matrix T and the absolute value of the product rTr: 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 
1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

|rT| _ t 
3 0 1 0 

0 3 0 1 

1 0 3 0 

0 1 0 3 
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The eigenvalues of the |rTr| are A = 1 and A = 2, each with multiplicity 2. By the results in Section 7.2, 

we get a lower bound of 2 on A2 of the cycle, which is exactly equal to the eigenvalue. 

As a final example, we show that forming a nonnegative matrix based on the current flow embedding does 

not necessarily produce the best bounds. This is true in spite of the exact relationship between the current 

flow embedding eigenvalues and the Laplacian eigenvalues. We show below the current flow embedding 

matrix and two nonnegative matrices produced from it: 

3 -1 -1 -1 

1 3 -1 -1 

1 -1 3 -1 

1 -1 -1 3 

2 2 -2 -2 

2 2 2 -2 

|rTr| 
5 13 1 

15 13 

3 15 1 

13    15 

and|rf|r| = -■ 

5 4 4 4 

4 5 4 4 

4 4 5 4 

4 4 4 5 

The eigenvalues of |TTr| are A = 1/2 with multiplicity 2, A = 3/2, and A = 5/2, yielding a lower bound 

of 8/5 on A2; the previous example gives a better lower bound. The eigenvalues of |rTr| are A = 1/4 with 

multiplicity 3 and A = 41/4, yielding a lower bound of 16/17, which is less than 1 and lower than the bounds 

for our previous examples. 
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